Abstract

Fuel cell vehicles and carsharing depict two potential solutions with regard to pollution and noise from traffic in cities. They are most effective when combined, and hydrogen is produced via electrolysis using renewables. One major hurdle in utilizing fuel cell vehicles is to size hydrogen refueling stations (HRS) and hydrogen production via electrolysis properly in order to fulfill the carsharing vehicles’ demand at any given time. This paper presents data on refueling behavior in free-floating carsharing, which have not been available thus far. Refueling profiles of hydrogen carsharing vehicles are modeled based on this data. Furthermore, this analysis presents and applies a methodology for optimizing topology of a wind turbine-connected HRS with onsite electrolysis via an evolutionary algorithm. This optimization is conducted for different carsharing fleet sizes, and HRS profitability is evaluated. The results show that larger fleets are capable of decreasing hydrogen production costs significantly. Moreover, adding capacity to the HRS in order to prepare for hydrogen demand from private vehicles in the future does not significantly increase costs. However, overall costs are still high compared to the current market price in Germany, requiring further cost reductions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call