Abstract
It is important to study the fitness of marine invertebrates in exposure to high water temperature. We studied whether the long-term high temperatures work on the fitness-related traits (righting behavior, covering behavior, foraging behavior, Aristotle's lantern reflex, body size) of S. intermedius whose parents (males and females) were exposed to ambient or high temperatures (~3 °C higher than the ambient) for a long period of time. The present study found that test diameter, wet body weight and test weight of offspring were not significantly different between temperature treatments, indicating that the parental sea urchins in exposure to high temperatures develop no carryover effects on the body size of the offspring sea urchins. We found no significant difference in foraging behavior, Aristotle's lantern reflex, lantern length and lantern weight of sea urchins after their parents had experienced long-term high temperatures. In addition, no significant change was found in the righting and covering behaviors of sea urchins whose parents were at long-term high temperatures. These results indicate that no significant lasting effects exhibited in the fitness-related behaviors and tissue size after their parents were exposed to high temperatures for a long time. The crushing force of test and test thickness showed no significant difference in the offspring of S. intermedius, no matter whether their parents were exposed to long-term high temperatures or not. The current results enrich our understanding that the parental sea urchin experiencing long-term high temperatures probably develop no carryover effects on the test of their offspring. We found that sea urchins whose parents were exposed to long-term elevated temperatures showed a significantly higher lantern length/test diameter and a significantly lower test height/test diameter in offspring sea urchins due to the thermal experience of their parents, showing the plasticity of lantern and test of offspring sea urchins in response to the thermal experience of their parents. Together with our previous investigation, the present study indicates that small sea urchins are less susceptible to the carryover effects of high temperatures in comparison with the developmental stages of embryos and larvae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.