Abstract

Living beings have been classically described as autopoietic machines: chemical systems, which maintain a reproducible steady state by producing their components and boundaries. On the other hand, very simple autopoietic micelles have been produced in laboratory. They consist in micelles able to catalyse the production of their own surfactants. However is very clear that these autopoietic systems are unable to evolve. In this way, these autopoietic micelles cannot be associated to living organisms, which are always linked by evolutionary relationships. Here I claim that living beings are a class of autopoietic systems able to conserve molecular information, a feature denoted by the term semiopoiesis. By defining the molecular information of their products, semiopoietic systems control their interaction with the medium and, by being able to convey molecular information beneficial to the maintenance of the organization to their offspring, semiopoietic systems can evolve by natural selection. Information can be described as a specific state or order assumed among a set of other possible states or orders. Thus, molecular information is the specific order by which the molecular components are ordered, such as the sequence of nucleotides in nucleic acids or of amino acids in proteins. However, molecular information is not limited to copolymers. The atoms in small organic compounds may also present diverse orders, giving rise to isomers. Different isomers can present very distinct chemical and physical properties such that the biophysical-chemical properties of an organic compound are determined by its composition and molecular information i.e. the specific positions in which their atoms are posited. This molecular information can be conserved during reactions catalysed by selective organocatalysts. In this way, organocatalysts appear as plausible candidates to primitive hosts for the genetic information, before the emergence of systems based in biopolymers. The bases of a putative organocatalysts-based evolution are discussed. Finally, I argue that organocatalytic micelles can be designed to produce programmable materials, artificial photosynthesis, self-building materials and artificial life with relevant industrial impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.