Abstract

The stochastic logistic model is the simplest model that combines individual-level demography with density dependence. It explicitly or implicitly underlies many models of biodiversity of competing species, as well as non-spatial or metapopulation models of persistence of individual species. The model has also been used to study persistence in simple disease models. The stochastic logistic model has direct relevance for questions of limiting similarity in ecological systems. This paper uses a biased random walk heuristic to derive a scaling relationship for the persistence of a population under this model, and discusses its implications for models of biodiversity and persistence. Time to extinction of a species under the stochastic logistic model is approximated by the exponential of the scaling quantity U=(R−1)2N/R(R+1), where N is the habitat size and R is the basic reproductive number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.