Abstract

Carry-save arithmetic, well known from multiplier architectures, can be used for the efficient CMOS implementation of a much wider variety of algorithms for high-speed digital signal processing than, only multiplication. Existing architectural strategies and circuit concepts for the realization of inner-product based and recursive algorithms are recalled. The two's complement overflow behavior of carry-save arithmetic is analyzed and efficient overflow correction schemes are given. Efficient approaches are presented for the carry-save, implementation of a saturation control. The concepts are extended and refined for the high-throughput implementation of decisiondirected algorithms such as division, modulo multiplication and CORDIC which have yet been avoided because of a lack of efficient concepts for implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.