Abstract
Plant virus movement proteins (MPs) facilitate virus spread in their plant hosts, and some of them are known to target plasmodesmata (PD). However, how the MPs target PD is still largely unknown. Carrot mottle virus (CMoV) encodes the ORF3 and ORF4 proteins, which are involved in CMoV movement. In this study, we used CMoV as a model to study the PD targeting of a plant virus MP. We showed that the CMoV ORF4 protein, but not the ORF3 protein, modified PD and led to the virus movement. We found that the CMoV ORF4 protein interacts with the host cell small ubiquitin-like modifier (SUMO) 1, 2 and the SUMO-conjugating enzyme SCE1, resulting in the ORF4 protein SUMOylation. Downregulation of mRNAs for NbSCE1 and NbSUMO impaired CMoV infection. The SUMO-interacting motifs (SIMs) LVIVF, VIWV, and a lysine residue at position 78 (K78) are required for the ORF4 protein SUMOylation. The mutation of these motifs prevented the protein to efficiently target PD, and further slowed or completely abolished CMoV systemic movement. Finally, we found that some of these motifs are highly conserved among umbraviruses. Our data suggest that the CMoV ORF4 protein targets PD by interacting with the host cell SUMOylation system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.