Abstract

We exploit the close relationship between the Carroll and fracton/dipole algebras, together with the method of coadjoint orbits, to define and classify classical Carroll and fracton particles. This approach establishes a Carroll/fracton correspondence and provides an answer to the question “What is a fracton?”.Under this correspondence, carrollian energy and center-of-mass correspond to the fracton electric charge and dipole moment, respectively. Then immobile massive Carroll particles correspond to the fracton monopoles, whereas certain mobile Carroll particles (“centrons”) correspond to fracton elementary dipoles. We uncover various new massless carrollian/neutral fractonic particles, provide an action in each case and relate them via a GL(2, ℝ) symmetry.We also comment on the limit from Poincaré particles, the relation to (electric and magnetic) Carroll field theories, contrast Carroll boosts with dipole transformations and highlight a generalisation to curved space ((A)dS Carroll).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call