Abstract

The electrical properties predicted by a widely accepted model for carrier-mediated ion transport in lipid bilayers are described. The different steps leading to ion transport and their associated rate constants are reaction at the interface between an ion in the aqueous phase and a carrier in the membrane (kRi), followed by translocation of the ion-carrier complex across the membrane interior (kis) and its dissociation at the other interface (kDi) after which the free carrier crosses back the membrane interior (ks). Results on glyceryl monooleate (GMO) membranes for a family of homologue carriers, the macrotetralide actin antibiotics (nonactin, monactin, dinactin, trinactin, and tetranactin) and a variety of ions (Na+, Cs+, Rb+, K+, NH4+, and Tl+) are presented. Internally consistent data obtained from steady-state electrical measurements (zero-current potential and conductance, current-voltage relationship) allow us to obtain the equilibrium permeability ratios for the different ions and show that for a given carrier kRi is relatively invariant from one ion to the other, except for Tl+ (larger), which implies that the ionic selectivity is controlled by the dissociation of the complex. The values of the individual rate constants obtained from current relaxation experiments are also presented and confirm the findings from steady-state measurements, as well as the isostericity concept for complexes of different ions with the same carrier (kis invariant). These also allow us to determine the aqueous phase membrane and torus membrane partition coefficients. Finally, the observed increase in kis from nonactin to tetranactin and, for all homologues, from GMO-decane to solvent-free GMO membranes, together with the concomitant decrease in kDi, can be explained in terms of modifications of electrostatic energy profiles induced by variations in carrier size and membrane thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.