Abstract
Graphene islands with zigzag edges embedded in nitrogen-terminated vacancies in hexagonal boron nitride are shown to develop intrinsic magnetism and preferentially order antiferromagnetically. The magnetic moment of each graphene island is given by the numerical imbalance of carbon atoms on its two sublattices, which is in turn directly related to the size of the host defect. We propose a carrier-mediated model for antiferromagnetic coupling between islands and estimate N\'eel temperatures for these structures in excess of 100 K in some instances, with the possibility of attaining even higher temperatures at higher island densities. Our results suggest the possibility of designing molecular magnets via defect engineering of hexagonal boron nitride templates followed by trapping of carbon atoms in the defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.