Abstract

Multimodal near-infrared II (NIR-II) theranostics combined with nanotechnology have emerged as promising treatments for cancer due to their noninvasive and high spatiotemporal nature. Traditional NIR-II theranostics typically comprise useless and massive inert carriers, resulting in low drug loading capacity, reduced therapeutic effects, and potential biotoxicity. To overcome these limitations, this work reports carrier-free NIR-II theranostics simultaneously with high drug loading capacity and multimodal NIR-II imaging capabilities for cancer phototheranostics in the NIR-II window. Carrier-free BTA nanoparticles (NPs) are prepared by self-assembling the NIR-II responsive conjugated oligomer BTA without adding coating agents; these NPs exhibited 100% drug loading and high-performance NIR-II theranostic capabilities. Cancer cell membranes are camouflaged on carrier-free BTA NPs to provide homologous targeting ability, enhanced stability, and 77.8% drug loading. Both in vitro and in vivo studies have indicated that biomimetic NPs provide efficient triple-modal guidance for NIR-II fluorescence, photoacoustic, and photothermal imaging and complete tumor elimination via photothermal therapy (PTT). Additionally, theranostics-based treatments with good biosecurity are demonstrated. This study contributes a new strategy for the design of high-drug-loading NIR-II theranostics and further promotes the clinical translation of theranostic agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.