Abstract

Transport of myo-inositol (MI) was studied in primary cultures of bovine retinal pigment epithelial (RPE) cells. At low external concentrations (0.01-1 mM), uptake appeared to follow saturation kinetics, although the reciprocal forms of the rate equations did not fit either Lineweaver-Burk or Eadie-Hofstee plots. Increasing external concentrations dramatically changed the pattern of MI entry. At two to three orders of magnitude higher than physiological concentrations, a second saturation occurred (pseudo saturation). Cells incubated with 20 microM [3H]MI for 60 min had a ratio of intracellular to extracellular radioactivity greater than or equal to 8, indicating active transport. MI transport reduction by Na+ replacement or inhibitors (phlorizin, ouabain, amiloride, KSCN, iodoacetamide, MI analogues) was greater when RPE cells were incubated with low (20-400 microM) than with high (10-20 mM) MI concentrations. Cells incubated with 20 microM MI at 53 or 65 degrees C showed increased transport (up to 560%) compared with cells at 22 degrees C. The effect on MI uptake (20 microM) of Na+ replacement also was reduced at 53 degrees C. The uptake of MI involved at least two transport systems. The major mechanism at low external MI concentrations (physiological levels) was a carrier-mediated active process. At high external MI levels, uptake occurred by a diffusion process. A lipotropic effect of MI may be responsible for this increased rate of diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.