Abstract

Exciton spin relaxation at low temperatures in InAlAs–InGaAs asymmetric double quantum dots embedded in AlGaAs layers has been investigated as a function of the barrier thickness by the time-resolved photoluminescence measurements. With decreasing the thickness of the AlGaAs layer between the dots, the spin relaxation time change from 3 ns to less than 500 ps . The reduction in the spin relaxation time was considered to originate from the spin-flip tunneling between the ground state in InAlAs dot and the excited states in InGaAs dot, and the resultant tunneling leads to the spin depolarization of the ground state in InGaAs dot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.