Abstract

3C-Silicon Carbide (3C-SiC) Schottky Barrier Diodes on silicon (Si) substrates (3C-SiC-on-Si) seem not to comply with the superior wide band gap expectations in terms of excessive measured sub-threshold current. In turn, that is one of the factors which deters their commercialization. Interestingly, the forward biased part of the Current-Voltage (I-V) characteristics in these devices carries considerable information about the material quality. In this context, an advanced Technology Computer Aided Design (TCAD) model for a vertical Platinum/3C-SiC Schottky power diode is created and validated with measured data. The model includes defects originating from both the Schottky contact and the hetero-interface of 3C-SiC with Si which allows the investigation of their impact on the magnification of the sub-threshold current. For this, barrier lowering, quantum field emission and trap assisted tunneling of majority carriers need to be considered at the non-ideal Schottky interface. The simulation results and measured data allowed for the comprehensive characterization of the defects affecting the carrier transport mechanisms of the forward biased 3C-SiC on Si power rectifier for the first time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.