Abstract

We studied experimentally and theoretically the substrate-orientation impact on carrier transport and capture in InGaN multiple quantum well (MQW) laser diodes (LDs) with emission in the aquamarine-green spectral range. A new simulation approach was developed to analyze this behavior of LEDs and LDs emitting at these wavelengths. We show that due to deep carrier confinement, the thermal escape from a QW in such devices is negligible. The carrier distribution among QWs is therefore determined by the carrier transport and capture rates. We also show that the ballistic transport mechanism is dominant in this type of MQW active region. In c-plane structures, this mechanism is tunneling-assisted, and therefore, the transport is much slower than in nonpolar and semipolar structures. Because of this, a strong carrier injection nonuniformity observed in c-plane LDs, causes the threshold current increase when number of QWs is >;2. This effect is not observed in semipolar LDs because the carrier transport rate is faster than the capture rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.