Abstract

We present calculations of reflection and transmission coefficients for electrons and holes at (100) interfaces for the GaAs–Ga1–xAlxAs system. We consider semi-infinite crystals of the two semiconductors joined at an abrupt or compositionally graded interface. The calculations are performed using the empirical tight binding approximation. The transport coefficients were computed as a function of the components of the incident carrier wavevector normal and parallel to the interface. We have investigated the transport coefficients for incident states near various band minima into different final state channels. The transmission into states with qualitatively similar character to the incident state is found to be much greater than transmission into states of different character. For example, an electron near the X minimum normal to the interface in Ga1–xAlxAs transmits into the X valley of GaAs with much greater probability than it transmits into the Γ minimum of GaAs. We have investigated the dependence of the transport coefficients on alloy composition. The effect of compositional grading of the interface on the transport coefficients has also been investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.