Abstract

Simple stacking of thin van der Waals 2D materials with different physical properties enables one to create heterojunctions (HJs) with novel functionalities and new potential applications. Here, a 2D material p-n HJ of GeSe/MoS2 is fabricated and its vertical and horizontal carrier transport and photoresponse properties are studied. Substantial rectification with a very high contrast (>104 ) through the potential barrier in the vertical-direction tunneling of HJs is observed. The negative differential transconductance with high peak-to-valley ratio (>105 ) due to the series resistance change of GeSe, MoS2 , and HJs at different gate voltages is observed. Moreover, strong and broad-band photoresponse via the photoconductive effect are also demonstrated. The explored multifunctional properties of the GeSe/MoS2 HJs are expected to be important for understanding the carrier transport and photoresponse of 2D-material HJs for achieving their use in various new applications in the electronics and optoelectronics fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.