Abstract
A self-consistent rate equation model is presented to investigate the influence of carrier relaxation on the modulation response of 1.3 mum InAs-GaAs quantum dot lasers. In this model, the carrier dynamics in GaAs barrier, relaxation pathways, and the phonon- and Auger-assisted relaxation are considered. The dependence of 3 dB bandwidth on the relaxation time and relaxation pathway is discussed. It is shown that carrier relaxation via less energy level has better carrier confinement and higher 3 dB bandwidth. The improvement of bandwidth by tunnelling injection QD structure is investigated from the point of view of relaxation pathway. The different effects of tunnelling into ground state and excited state on the 3 dB bandwidth are analyzed. The enhanced carrier relaxation by p-type modulation doping and its effect on the bandwidth are investigated. It is found that there exists a tradeoff on the improvement of bandwidth by p-doping, which is explained as the competition between the bandwidth limitation of K -factor and relaxation dynamics. Increase in the bandwidth of QD lasers by improving both the carrier relaxation dynamics and K-factor limitation is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Lightwave Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.