Abstract

The present study deals with the application of supported liquid membrane (SLM) technique for the separation of thorium from nitric acid medium using 2-ethyl hexyl hydrogen 2-ethyl hexyl phosphonate (PC88A) as a carrier and aqueous ammonium carbonate as a receiving phase. The effects of feed acidity, nature of strippant, and membrane pore size and membrane thickness on the transport of thorium have been studied in detail. Transport behavior of uranium (233U) and fission products from a radioanalytical laboratory waste is also studied. Stability of the membrane against the leaching of the extractant and stability of the membrane support have been investigated. An attempt has been made to model the physicochemical transport of thorium in SLM and establish the mechanism of thorium transport. Transport of thorium increased from 25% to about 96% using 0.75 M PC88A in n-dodecane as carrier and 2 M ammonium carbonate as stripping phase as the feed acidity decreased from 4 M HNO3 to 0.5 M HNO3. Optimum conditions obtained from this study were applied to recover thorium and 233U from analytical waste generated in the laboratory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.