Abstract

We report the achievement of a power conversion efficiency (PCE) improvement in P3HT:PCBM-based bulk-heterojunction type polymer solar cells using photocrosslinked P3HT (c-P3HT) as the electron blocking/hole extraction layer and titanium oxide nanoparticles (TiO2) as the hole blocking/electron extraction layer. Devices prepared with a 20 nm thick c-P3HT layer showed an improved PCE of 3.4% compared to devices prepared without the c-P3HT layer (PCE = 3.0%). This improvement was attributed to an extension in the carrier lifetime and an enhancement in the carrier mobility. The incorporation of the c-P3HT layer lengthened (by more than a factor of 2) the carrier lifetime and increased (by a factor of 5) the hole mobility. These results suggest that the c-P3HT layer not only prevented non-geminate recombination but it also improved carrier transport. The PCE was further improved to 4.0% through the insertion of a TiO2 layer that acted as an effective hole-blocking layer at the interface between the photoactive layer and the cathode. This work demonstrates that the incorporation of solution-processable hole and electron blocking/extraction layers offers an effective means for preventing nongeminate recombination at the interfaces between a photoactive layer and an electrode in bulk-heterojunction-type polymer solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.