Abstract

We analyze and stabilize fluctuations of the relative phase between the carrier and the envelope of a mode-locked laser. Mechanisms generating fluctuations of the carrier–envelope-offset (CEO) phase are experimentally identified in lasers with and without prisms for dispersion compensation. One mechanism is amplitude-to-phase coupling via self-steepening. This mechanism translates power changes into variations of the CEO phase. A similar but much stronger effect is caused by beam-pointing variations in lasers with intracavity prisms. Both mechanisms convert power noise of the laser into phase noise and can be used to externally control or stabilize the CEO frequency by adjusting the pump power. Our measurements are well explained by a theoretical model. This investigation allowed us to obtain an unsurpassed stabilization of the CEO phase to 0.02 rad rms for a frequency range from 0.01 Hz to 10 kHz. We extend the discussion to pulse-amplification schemes and show that beam-pointing variations are also expected to have a strong influence on the CEO phase of amplified pulses. We discuss methods to reduce or avoid CEO noise by suitable design of the dispersion-compensation scheme, both in oscillators and in amplifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.