Abstract
Carrier dynamics in metallic nanostructures is strongly influenced by their confining dimensions. Gold nanoparticles of size $\sim ~2$ nm which fill the transition space separating metallic and non-metallic behavior. In this work, we report carrier dynamics in high aspect ratio ultrathin gold nanowires (Au-UNWs) of average diameter $\sim $ 2 nm using pump (3.1 eV) and coherent white light continuum as probe in the spectral range of 1.15 to 2.75 eV. The transient carrier dynamics in Au-UNWs under extreme excitation regime is slower than predicted by the often used two-temperature model. We identify Auger-assisted carrier heating process which slows down the hot carrier cooling dynamics. The rate equation model fitted to the data yields an estimate of Auger coefficient for gold nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.