Abstract
There is an urgent need for efficient solution-processable p-type semiconductors. Copper(I) iodide (CuI) has attracted attention as a potential candidate due to its good electrical properties and ease of preparation. However, its carrier dynamics still need to be better understood. Carrier dynamics after bandgap excitation yielded a convoluted signal of free carriers (positive signal) and a negative feature, which was also present when the material was excited with sub-bandgap excitation energies. This previously unseen feature was found to be dependent on measurement temperature and attributed to negative photoconductivity. The unexpected signal relates to the formation of polarons or strongly bound excitons. The possibility of coupling CuI to plasmonic sensitizers is also tested, yielding positive results. The outcomes mentioned above could have profound implications regarding the applicability of CuI in photocatalytic and photovoltaic systems and could also open a whole new range of possible applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.