Abstract

Deep ultraviolet (UV) photoluminescence (PL) spectroscopy has been employed to study the optical properties and carrier dynamics in AlN and GaN epilayers at temperatures from 10 to 800 K. The parameters that describe the temperature variation of the energy bandgap (α and β, or aB and θ) and linewidth broadening have been obtained and are compared with the previously reported values in AlN and GaN obtained by different measurement methods in narrower temperature ranges. Our experimental results demonstrate that the broader temperature range of measurements is necessary to obtain accurate values of these parameters, particularly for AlN. The phonon-carrier interactions were also investigated in both AlN and GaN epilayers. At low temperatures, the linewidth of PL emission lines increases with temperature due to the electron-acoustic phonon interaction. The electron-LO phonon interaction becomes important above 200 K and eventually dominant at high temperatures in both AlN and GaN. The temperature dependencies of the decay lifetimes were investigated up to 500 K, from which free excitons and free carriers interactions are discussed for AlN and GaN epilayers. The implications of our findings to the optoelectronic and electronic device applications at elevated temperatures are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.