Abstract

Carrier dynamics across the interface of heterostructures have important technological, photovoltaic, and catalytic implications. Using first-principles time-dependent density functional theory, we have systematically investigated the charge transfer of excited carriers from CdS to MoS2 and found that two interdependent mechanisms are responsible for the transfer, one slow and one fast. While the slower process may be attributed to typical electron-phonon coupling, the interfacial dipole resulting from this transfer enables a fast secondary process involving a level crossing of the excited carrier state in CdS with receiving states in MoS2. An analysis based on the interfacial binding energy reveals that the Cd-terminated (001) interface is by far the most energetically favorable, which in addition to its calculated fast resonant electron transfer suggests it is a good candidate to explain the experimentally observed charge transfer between CdS and MoS2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call