Abstract

The carrier distribution over Landau levels was studied in resonant tunneling GaAs/AlGaAs quantum well structures under tunneling pumping of the upper subband. The numerical calculations of the Landau level populations for various values of pumping intensity (tunneling time), magnetic field and structure doping were carried out. The population inversion between zeroth Landau level of the upper subband and the first Landau level of the lowest subband was shown to exist in wide range of the magnetic field strength. The effect of various scattering mechanisms, both two-particle (electron-electron scattering) and single-particle (acoustic phonon and interface roughness scattering) ones, on level population was studied. The way of lifting the selection rule forbidding the inter-Landau level terahertz transitions of interest and achieving considerable values of the dipole matrix element is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call