Abstract

Quantum dot (QD) lasers exhibit many interesting and useful properties such as low threshold current, temperature insensitivity or chirpless behavior. In order to reach the standards of long-haul optical transmissions, 1.55 μm InAs QD lasers on InP substrate have been developed. Based on time resolved photoluminescence (PL) measurements, carrier dynamics behavior is at first investigated. Electroluminescence (EL) results are then shown at room temperature exhibiting a laser emission centered at 1.61 μm associated to a threshold current density as low as 820 A/cm2 for a six InAs QD stacked layers. Finally, a rate equation model based on the reservoir theory is used to model both time-resolved photoluminescence (TRPL) and electroluminescence results. It is shown that carrier dynamic calculations are in a good agreement with measurements since the saturation effect occurring at high injected power is clearly predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.