Abstract

This paper describes the results of a microscopic treatment of carrier-carrier scattering effects in the optical gain and refractive index spectra of a quantum-well semiconductor laser structure. The approach uses the Semiconductor Maxwell Bloch equations to describe the interaction between the carriers and the laser field, in the presence of many-body Coulomb interactions. Coulomb correlation effects are treated at the level of quantum kinetic theory in the Markovian limit. This approach shows the presence of nondiagonal Coulomb correlation contributions, in addition to the familiar diagonal contributions giving rise to polarization dephasing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.