Abstract

A quantitative analysis of carrier-carrier scattering and optical dephasing in semiconductors is presented and results are given for quasiequilibrium situations and for the relaxation of a kinetic hole in a quasithermal carrier distribution. The calculations involve direct numerical integration of the Boltzmann equation for carrier-carrier scattering in the Born approximation. The screening of the Coulomb interaction is treated consistently in the fully dynamical random-phase approximation. Carrier relaxation rates are extracted from the Boltzmann-equation solution and a quantitative test of the relaxation-time approximation for situations near thermal quasiequilibrium is performed. The parametric dependence of carrier-collision rates and dephasing on plasma density, temperature, and electron and hole masses is discussed and analyzed in terms of phase-space blocking and screening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.