Abstract
More than 90% of house dust mite-allergic patients are sensitized to the major Dermatophagoides pteronyssinus allergen, Der p 2. The aim of this study was to develop and characterize an allergy vaccine based on carrier-bound Der p 2 peptides, which should allow reducing IgE- and T-cell-mediated side-effects during specific immunotherapy (SIT). Five Der p 2 peptides (P1-P5) were synthesized and analyzed regarding IgE reactivity and allergenic activity. Lymphoproliferative and cytokine responses induced with Der p 2 and Der p 2 peptides were determined in peripheral blood mononuclear cells from mite-allergic patients. Der p 2-specific IgG antibodies induced with carrier-bound Der p 2 peptides in mice and rabbits were tested for their capacity to inhibit IgE binding and basophil activation in allergic patients. Of five overlapping peptides (P1-P5) covering the Der p 2 sequence, two peptides (P2 and P4) were identified, which showed no relevant IgE reactivity, allergenic activity, and induced lower Der p 2-specific T-cell activation than Der p 2. However, when coupled to a carrier, P2 and P4 induced Der p 2-specific IgG antibodies in animals, which inhibited allergic patients' IgE binding to the allergen and allergen-induced basophil activation similar as antibodies induced with Der p 2. Carrier-bound Der p 2 peptides should allow avoiding IgE-mediated side-effects, and because of their low potential to activate allergen-specific T cells, they may reduce late-phase side-effects during SIT. Further, these peptides may be also useful for prophylactic vaccination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.