Abstract

Pulse width modulation (PWM) converters generate switching common-mode voltages (CMVs) across the load terminals. These voltages cause common-mode currents, leading to bearing failure in motor loads and electromagnetic interference problems. This paper presents a generalized carrier-based PWM technique for open-end winding motor drives that completely eliminates switching CMV. The proposed method is applicable to both dual two-level voltage source inverter and dual matrix converter-based open-end winding drives. Detailed analysis shows that the carrier-based method requires significantly less computation compared to the corresponding space vector implementation. This paper also outlines the relationship between the two implementations. The carrier-based method is shown to achieve superior performance in terms of resource requirements and execution time when implemented on a field-programmable gate array-based real-time control platform. Simulation and experimental results have been presented to validate the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.