Abstract

In monolayer MoS2, optical transitions across the direct band gap are governed by chiral selection rules, allowing optical valley initialization. In time-resolved photoluminescence (PL) experiments, we find that both the polarization and emission dynamics do not change from 4 to 300K within our time resolution. We measure a high polarization and show that under pulsed excitation the emission polarization significantly decreases with increasing laser power. We find a fast exciton emission decay time on the order of 4ps. The absence of a clear PL polarization decay within our time resolution suggests that the initially injected polarization dominates the steady-state PL polarization. The observed decrease of the initial polarization with increasing pump photon energy hints at a possible ultrafast intervalley relaxation beyond the experimental ps time resolution. By compensating the temperature-induced change in band gap energy with the excitation laser energy, an emission polarization of 40% is recovered at 300K, close to the maximum emission polarization for this sample at 4K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call