Abstract

This paper proposes an innovative automatic carrier landing control law for carrier-based aircraft considering complex ship motion and wind environment. Specifically, a strategy is proposed to synthesize preview control with an adaptive nonlinear control scheme. Firstly, incremental nonlinear backstepping control law is adopted in the attitude control loop to enhance the anti-disturbance capability of the aircraft. Secondly, to enhance the glide slope tracking performance under severe sea conditions, the carrier motion is predicted, and the forecasted motion is adopted in an optimal preview control guidance law to compensate influences induced by carrier motion. However, synthesizing the inner-loop and outer-loop control is not that straightforward since the preview control is naturally an optimal control law which requires a state-space model. Therefore, low-order equivalent fitting of the attitude-to-altitude high-order system model needs to be performed; furthermore, a state observer needs to be designed for the low-order equivalent system to supply required states to the landing controller. Finally, to validate the proposed methodology, an unmanned tailless aircraft model is used to perform the automatic landing tasks under variant sea conditions. Results show that the automatic carrier landing system can lead to satisfactory landing precision and success rate even under severe sea conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call