Abstract

Cronobacter sakazakii causes severe neonatal infections, but we know little about gut carriage of this pathogen in very low birthweight infants. We sequenced 16S ribosomal RNA (rRNA) genes from 2304 stools from 121 children at St Louis Children's Hospital whose birthweight was ≤1500 g, attempted to isolate C. sakazakii from 157 of these stools, genome-sequenced the recovered isolates, and sought correlations between indices of Cronobacter excretion, host characteristics, and unit formula use. Of these 2304 stools, 1271 (55.2%) contained Cronobacter rRNA gene sequences. The median (interquartile range) per-subject percentage of specimens with at least 1 Cronobacter sequence and the median per-subject read density were 57.1 (25.5-87.3) and 0.07 (0.01-0.67), respectively. There was no variation according to commercially prepared liquid vs powdered formula use in the neonatal intensive care unit, or the day of life that specimens were produced. However, the proportion of specimens containing >4.0% of reads mapping to Cronobacter fell from 4.3% to 0.9% after powdered infant formula was discontinued (P < .0001). We isolated sequence type 4 (ST4) C. sakazakii from multiple specimens from 2 subjects; 1 also harbored sequence type 233. The sequenced ST4 isolates from the 2 subjects had >99.9% sequence identity in the approximately 93% of best-match reference genome that they contained, and shared multiple virulence loci. Very low birthweight infants excrete putatively pathogenic Cronobacter. High-density Cronobacter sequence samples were more common during the use of powdered infant formula. Better understanding of the ecology of Cronobacter in infant guts will inform future prevention and control strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.