Abstract

This study investigates the magnetohydrodynamic (MHD) flow of Carreau nanofluid through a porous medium with motile microorganisms, focusing on various geometries under shear-thinning and shear-thickening conditions. The aim is to elucidate how factors such as activation energy, Schmidt number, Peclet number, bioconvection, Brownian motion, thermophoresis, and heat generation influence flow dynamics. Using similarity transformations, we nondimensionalize the governing equations and solve them numerically with the Runge–Kutta method and a shooting technique in MATLAB. Our findings indicate that variations in Carreau, magnetic, and suction parameters notably impact velocity, temperature, concentration, diffusion, wall friction, and heat transfer, generally resulting in reduced values. Specifically, the flat plate geometry exhibits lower skin friction, heat transfer, and mass transfer rates, as well as decreased gyrotactic microorganism effects. Increased activation energy enhances concentration fields, signaling slower chemical reactions, while higher Peclet numbers and bioconvection inversely affect flow properties. Additionally, reduced Schmidt numbers lead to lower microorganism concentrations. These results provide valuable insights into the complex interactions between fluid dynamics and microorganism behavior, with implications for optimizing processes in biotechnology and environmental management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.