Abstract
Traditional manufacturing workflows strongly decouple design and fabrication phases. As a result, fabrication-related objectives such as manufacturing time and precision are difficult to optimize in the design space, and vice versa. This paper presents HL-HELM, a high-level, domain-specific language for expressing abstract, parametric fabrication plans; it also introduces LL-HELM, a low-level language for expressing concrete fabrication plans that take into account the physical constraints of available manufacturing processes. We present a new compiler that supports the real-time, unoptimized translation of high-level, geometric fabrication operations into concrete, tool-specific fabrication instructions; this gives users immediate feedback on the physical feasibility of plans as they design them. HELM offers novel optimizations to improve accuracy and reduce fabrication time as well as material costs. Finally, optimized low-level plans can be interpreted as step-by-step instructions for users to actually fabricate a physical product. We provide a variety of example fabrication plans in the carpentry domain that are designed using our high-level language, show how the compiler translates and optimizes these plans to generate concrete low-level instructions, and present the final physical products fabricated in wood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.