Abstract

Primates employ wrist ulnar deviation during a variety of locomotor and manipulative behaviors. Extant hominoids share a derived condition in which the ulnar styloid process has limited articulation or is completely separated from the proximal carpals, which is often hypothesized to increase ulnar deviation range of motion. Acute angulation of the hamate's triquetral facet is also hypothesized to facilitate ulnar deviation mobility and mechanics. In this study, we test these longstanding ideas. Three-dimensional (3D) carpal kinematics were examined using a cadaveric sample of Pan troglodytes, Pongo sp., and five monkey species. Ulnar styloid projection and orientation of the hamate's triquetral facet were quantified using 3D models. Although carpal rotation patterns in Pan and Pongo were uniquely similar in some respects, P. troglodytes exhibited overall kinematic similarity with large terrestrial cercopithecoids (Papio and Mandrillus). Pongo, Macaca, and Ateles had high wrist ulnar deviation ranges of motion, but Pongo did this via a unique mechanism. In Pongo, the triquetrum functions as a distal carpal rather than part of the proximal row. Ulnar styloid projection and wrist ulnar deviation range of motion were not correlated but ulnar deviation range of motion and the triquetrohamate facet orientation were correlated. Increased ulnar deviation mobility is not the function of ulnar styloid withdrawal in hominoids. Instead, this feature probably reduces stress on the ulnar side wrist or is a byproduct of adaptations that increase supination. Orientation of the hamate's triquetral facet offers some potential to reconstruct ulnar deviation mobility in extinct primates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call