Abstract

Digital subtraction angiography (DSA) and magnetic resonance imaging (MRI) findings in 20 patients with carotid-cavernous fistula (CCF; 3 direct CCFs and 17 indirect CCFs) were retrospectively reviewed to evaluate venous drainage patterns that may cause intracerebral haemorrhage or venous congestion of the brain parenchyma. We evaluated the relationship between cortical venous reflux and abnormal signal intensity of the brain parenchyma on MRI. Cortical venous reflux was identified on DSA in 12 of 20 patients (60.0%) into the superficial middle cerebral vein (SMCV; n=4), the uncal vein (n=2), the petrosal vein (n=2), the lateral mesencephalic vein (LMCV; n=1), the anterior pontomesencephalic vein (APMV; n=1), both the APMV and the petrosal vein (n=1) and both the uncal vein and the SMCV (n=1). Features of venous congestion, such as tortuous and engorged veins, focal staining and delayed appearance of the veins, were demonstrated along the region of cortical venous reflux in the venous phase of internal carotid or vertebral arteriography in six of 20 patients (30.0%). These findings were not observed in the eight CCF patients who did not demonstrate cortical venous reflux. MRI revealed abnormal signal intensity of the brain parenchyma along the region with cortical venous reflux in four of 20 indirect CCF patients (20%). Of these four patients, one presented with putaminal haemorrhage, while the other three presented with hyperintensity of the pons, the middle cerebellar peduncle or both on T2-weighted images, reflecting venous congestion. The venous drainage routes were obliterated except for cortical venous reflux in these four patients and the patients without abnormal signal intensity on MRI had other patent venous outlets in addition to cortical venous reflux. CCF is commonly associated with cortical venous reflux. The obliteration or stenosis of venous drainage routes causes a converging venous outflow that develops into cortical venous reflux and results in venous congestion of the brain parenchyma or intracerebral haemorrhage. Hyperintensity of brain parenchyma along the region of cortical venous reflux on T2-weighted images reflects venous congestion and is the crucial finding that indicates concentration of venous drainage into cortical venous reflux.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.