Abstract

Augmented sensitivity of peripheral chemoreceptors (PChS) is a common finding in systolic heart failure (HF). It is related to lower left ventricle systolic function, higher plasma concentrations of natriuretic peptides, worse exercise tolerance and greater prevalence of atrial fibrillation compared to patients with normal PChS. The magnitude of ventilatory response to the activation of peripheral chemoreceptors is proportional to the level of heart rate (tachycardia) and blood pressure (hypertension) responses. All these responses can be measured non-invasively in a safe and reproducible fashion using different methods employing either hypoxia or hypercapnia. Current interventions aimed at modulation of peripheral chemoreceptors in HF are focused on carotid bodies (CBs). There is a clear link between afferent signalling from CBs and sympathetic overactivity, which remains the priority target of modern HF treatment. However, CB modulation therapies may face several potential obstacles: (1) As evidenced by HF trials, an excessive inhibition of sympathetic system may be harmful. (2) Proximity of critical anatomical structures (important vessels and nerves) makes surgical and transcutaneous interventions on CB technically demanding. (3) Co-existence of atherosclerosis in the area of carotid artery bifurcation increases the risk of central embolic events related to CB modulation. (4) The relative contribution of CBs vs. aortic bodies to sympathetic activation in HF patients is unclear. (5) Choosing optimal candidates for CB modulation from the population of HF patients may be problematic. (6) There is a risk of nocturnal hypoxia following CB ablation - mostly after bilateral procedures and in patients with concomitant obstructive sleep apnoea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call