Abstract
Sympathetic nervous system overactivation and abnormal lipid metabolism are featured in obesity and may lead to cardiac remodeling. The effects of carotid baroreceptor stimulation (CBS) on cardiac remodeling in obese rats and the underlying mechanisms were explored. An obesity model was induced by 16-week high-fat diet feeding. A CBS device was implanted at the 8th week. Body weight and blood pressure measurements, electrocardiography, echocardiography, and glucose and insulin tolerance tests were conducted before sampling. Plasma analysis and histological and biological analyses of left ventricle were also performed. Neonatal rat cardiomyocytes cocultured with 3T3-L1 in transwell chambers were used to investigate the mechanisms. CBS alleviated several manifestations of obesity, including increased body weight, high blood pressure, hyperlipidemia, and enhanced sympathetic activity. In obese hearts, norepinephrine levels decreased, and the monoamine oxidase A (MAO-A) and reactive oxygen species level increased; these changes, as well as cardiac fibrosis, lipid metabolic disorders, and heart dysfunction, were inhibited by CBS. Neonatal rat cardiomyocytes incubated with norepinephrine showed MAO-A upregulation, increased reactive oxygen species levels, lipid metabolic disorders, and inflammatory response, which were inhibited by clorgyline, a selective MAO-A inhibitor. CBS effectively suppresses sympathetic nervous system activity and oxidative stress mediated by MAO-A and prevents cardiac remodeling in obese rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.