Abstract

Carotenoids of 20 species of dragonflies (including 14 species of Anisoptera and six species of Zygoptera) were investigated from the viewpoints of comparative biochemistry and chemical ecology. In larvae, β-carotene, β-cryptoxanthin, lutein, and fucoxanthin were found to be major carotenoids in both Anisoptera and Zygoptera. These carotenoids were assumed to have originated from aquatic insects, water fleas, tadpoles, and small fish, which dragonfly larvae feed on. Furthermore, β-caroten-2-ol and echinenone were also found in all species of larvae investigated. In adult dragonflies, β-carotene was found to be a major carotenoid along with lutein, zeaxanthin, β-caroten-2-ol, and echinenone in both Anisoptera and Zygoptera. On the other hand, unique carotenoids, β-zeacarotene, β,ψ-carotene (γ-carotene), torulene, β,γ-carotene, and γ,γ-carotene, were present in both Anisoptera and Zygoptera dragonflies. These carotenoids were not found in larvae. Food chain studies of dragonflies suggested that these carotenoids originated from aphids, and/or possibly from aphidophagous ladybird beetles and spiders, which dragonflies feed on. Lutein and zeaxanthin in adult dragonflies were also assumed to have originated from flying insects they feed on, such as flies, mosquitoes, butterflies, moths, and planthoppers, as well as spiders. β-Caroten-2-ol and echinenone were found in both dragonfly adults and larvae. They were assumed to be metabolites of β-carotene in dragonflies themselves. Carotenoids of dragonflies well reflect the food chain during their lifecycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call