Abstract
Carotenoid-to-bacteriochlorophyll energy transfer has been widely investigated in bacteriochlorophyll (BChl) a-containing light harvesting complexes. Blastochloris viridis utilizes BChl b, whose absorption spectrum is more red-shifted than that of BChl a. This has implications on the efficiency and pathways of carotenoid-to-BChl energy transfer in this organism. The carotenoids that comprise the light-harvesting reaction center core complex (LH1-RC) of B. viridis are 1,2-dihydroneurosporene and 1,2-dihydrolycopene, which are derivatives of carotenoids found in the light harvesting complexes of several BChl a-containing purple photosynthetic bacteria. Steady-state and ultrafast time-resolved optical spectroscopic measurements were performed on the LH1-RC complex of B. viridis at room and cryogenic temperatures. The overall efficiency of carotenoid-to-bacteriochlorophyll energy transfer obtained from steady-state absorption and fluorescence measurements were determined to be ∼27% and ∼36% for 1,2-dihydroneurosporene and 1,2-dihydrolycopene, respectively. These results were combined with global fitting and target analyses of the transient absorption data to elucidate the energetic pathways by which the carotenoids decay and transfer excitation energy to BChl b. 1,2-Dihydrolycopene transfers energy to BChl b via the S2 → Qx channel with kET2 = (500 fs)(-1) while 1,2-dihydroneurosporene transfers energy via S1→ Qy (kET1 = (84 ps)(-1)) and S2 → Qx (kET2 = (2.2 ps)(-1)) channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.