Abstract
Although light is recognized as one of the main factors influencing fruit carotenogenesis, the specific role of UV-B radiation has been poorly investigated. The present work is addressed to assess the molecular events underlying carotenoid accumulation in presence or absence of ultraviolet-B (UV-B) light in tomato fruits of wild-type and high pigment-1 (hp-1), a mutant characterized by exaggerated photoresponsiveness and increased fruit pigmentation. Gene expression analyses indicated that in wild-type fruits UV-B radiation mainly negatively affects the carotenoid biosynthetic genes encoding enzymes downstream of lycopene both in flesh and peel, suggesting that the down-regulation of genes CrtL-b and CrtL-e and the subsequent accumulation of lycopene during tomato ripening are determined at least in part by UV-B light. In contrast to wild-type, UV-B depletion did not greatly affect carotenoid accumulation in hp-1 and generally determined minor differences in gene expression between control and UV-B-depleted conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.