Abstract
BackgroundLow temperatures greatly limit the growth of microorganisms. Low-temperature adaptation in microorganisms involves multiple mechanisms. Carotenoids are naturally occurring lipid-soluble pigments that act as antioxidants and protect cells and tissues from the harmful effects of free radicals and singlet oxygen. However, studies on the regulation of carotenoid biosynthesis at low temperatures in microorganisms are limited. In this study, we investigated the correlation between carotenoids and low-temperature adaptation in the cold-adapted strain of Rhodosporidium kratochvilovae YM25235.ResultsCarotenoid biosynthesis in YM25235 was inhibited by knocking out the bifunctional lycopene cyclase/phytoene synthase gene (RKCrtYB) using the established CRISPR/Cas9 gene-editing system based on endogenous U6 promoters. The carotenoids were extracted with acetone, and the content and composition of the carotenoids were analyzed by spectrophotometry and HPLC. Then, the levels of reactive oxygen species (ROS) and the growth rate in YM25235 were determined at a low temperature. The results indicated that the carotenoid biosynthesis and ROS levels were increased in the YM25235 strain at a low temperature and inhibition of carotenoid biosynthesis was associated with higher ROS levels and a significant decrease in the growth rate of YM25235 at a low temperature.ConclusionsThe regulation of carotenoid biosynthesis was associated with low-temperature adaptation in YM25235. Our findings provided a strong foundation for conducting further studies on the mechanism by which YM25235 can adapt to low-temperature stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.