Abstract

β-Carotene is a member of the carotenoid family and is a red-orange pigment abundantly present in many vegetables and fruits. As an antioxidant, it eliminates excessive reactive oxygen species generated in the body. Accordingly, it has potential to be used in the pharmaceutical, food, and cosmetic industries. β-Carotene has a very low water solubility and low bioavailability; thus, there is a need to develop techniques to overcome these issues. In this study, we aimed to enhance the water solubility of β-carotene by using hot-melt technology, a type of solid dispersions technology. When preparing β-carotene solid dispersion using this method, suitable conditions for the emulsifiers and mixing ratios were investigated using water solubility as an index. Setting the weight ratio of β-carotene:polyvinylpyrrolidone:sucrose fatty acid ester to 10%:70%:20% resulted in the poorly-water soluble β-carotene showing improved water solubility (120μg/mL). The physicochemical properties of the optimized β-carotene solid dispersion were analyzed using field emission scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction. The solid dispersion was found to have an amorphous structure. The improved solubility observed for β-carotene in the solid dispersions developed in this work may make these dispersions useful as additives in foods or in nutraceutical formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.