Abstract

Traditionally, the study of reaction mechanisms of complex reaction systems such as combustion has been performed on an individual basis by optimizations of transition structure and minimum energy path or by reaction dynamics trajectory calculations for one elementary reaction at a time. It is effective, but time-consuming, whereas important and unexpected processes could have been missed. In this article, we present a direct molecular dynamics (DMD) approach and a virtual-reality simulation program, CARNOT, in which plausible chemical reactions are simulated simultaneously at finite temperature and pressure conditions. A key concept of the present ab initio molecular dynamics method is to partition a large, chemically reactive system into molecular fragments that can be adjusted on the fly of a DMD simulation. The theory represents an extension of the explicit polarization method to reactive events, called ReX-Pol. We propose a highest-and-lowest adapted-spin approximation to define the local spins of individual fragments, rather than treating the entire system by a delocalized wave function. Consequently, the present ab initio DMD can be applied to reactive systems consisting of an arbitrarily varying number of closed and open-shell fragments such as free radicals, zwitterions, and separate ions found in combustion and other reactions. A graph-data structure algorithm was incorporated in CARNOT for the analysis of reaction networks, suitable for reaction mechanism reduction. Employing the PW91 density functional theory and the 6-31+G(d) basis set, the capabilities of the CARNOT program were illustrated by a combustion reaction, consisting of 28 650 atoms, and by reaction network analysis that revealed a range of mechanistic and dynamical events. The method may be useful for applications to other types of complex reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.