Abstract

The role of carnosine, N-acetylcarnosine and homocarnosine as scavengers of reactive oxygen species and protectors against neuronal cell death secondary to excitotoxic concentrations of kainate and N-methyl- d-aspartate was studied using acutely dissociated cerebellar granule cell neurons and flow cytometry. We find that carnosine, N-acetylcarnosine and homocarnosine at physiological concentrations are all potent in suppressing fluorescence of 2′,7′-dichlorofluorescein, which reacts with intracellularly generated reactive oxygen species. However, only carnosine in the same concentration range was effective in preventing apoptotic neuronal cell death, studied using a combination of the DNA binding dye, propidium iodide, and a fluorescent derivative of the phosphatidylserine-binding dye, Annexin-V. Our results indicate that carnosine and related compounds are effective scavengers of reactive oxygen species generated by activation of ionotropic glutamate receptors, but that this action does not prevent excitotoxic cell death. Some other process which is sensitive to carnosine but not the related compounds is a critical factor in cell death. These observations indicate that at least in this system reactive oxygen species generation is not a major contributor to excitotoxic neuronal cell death.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call