Abstract
Traditional chemotherapeutics of low-molecular weight diffuse passively across intact membrane structures of normal healthy cells found in tissues and organ systems in a non-specific unrestricted manner which largely accounts for the induction of most sequelae which restrict dosage, administration frequency, and duration of therapeutic intervention. Molecular strategies that offer enhanced levels of potency, greater efficacy and broader margins-of-safety include the discovery of alternative candidate therapeutics and development of methodologies capable of mediating properties of selective "targeted" delivery. The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramidate)-[anti- EGFR] was synthesized utilizing organic chemistry reactions that comprised a multi-stage synthesis regimen. Multiple forms of analysis were implemented to vadliate the successful synthesis (UV spectrophotometric absorbance), purity and molar-incorporation-index (UV spectrophotometric absorbance, chemical-based protein determination), absence of fragmentation/polymerization (SDS-PAGE/chemiluminescent autoradiography), retained selective binding-avidity of IgG-immunoglobulin (cell-ELISA); and selectively "targeted" antineoplastic cytotoxicity (biochemistry-based cell vitality/viability assay). The botanicals carnosic acid, ginkgolide-B and tangeretin, each individually exerted maximum antineoplastic cytotoxicity levels of 58.1%, 5.3%, and 41.1% respectively against pulmonary adenocarcinoma (A549) populations. Dexamethasone-(C21-phosphoramidate)-[anti-EGFR] formulated at corticosteroid/ glucocorticoid equivalent concentrations produced anti-neoplastic cytotoxicity at levels of 7.7% (10-9 M), 26.9% (10-8 M), 64.9% (10-7 M), 69.9% (10-6 M) and 73.0% (10-5 M). Ccarnosic acid, ginkgolide-B and tangeretin in simultaneous dual-combination with dexamethasone-(C21-phosphoramidate)-[anti-EGFR] exerted maximum anti-neoplastic cytotoxicity levels of 70.5%, 58.6%, and 69.7% respectively. Carnosic acid, ginkgolide-B and tangeretin botanicals exerted anti-neoplastic cytotoxicity against pulmonary adenocarcinoma (A549) which additively contributed to the anti-neoplastic cytotoxic potency of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramidate)-[anti-EGFR]. Carnosic acid and tangeretin were most potent in this regard both individually and in dual-combination with dexamethasone-(C21- phosphoramidate)-[anti-EGFR]. Advantages and attributes of carnosic acid and tangeretin as potential monotherapeutics are a wider margin-of-safety of conventional chemotherapeutics which would readily complement the selective "targeted" delivery properties of dexamethasone-(C21-phosphoramidate)-[anti-EGFR] and possibly other covalent immunopharmaceuticals in addition to providing opportunities for the discovery of combination therapies that provide heightened levels of anti-neoplastic efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.