Abstract

Mitochondria are the major site of adenosine triphosphate (ATP) production in mammalian cells. Moreover, mitochondria produce most of the reactive oxygen species (ROS) in nucleated cells. Redox and bioenergetic abnormalities have been seen in mitochondria during the onset and progression of neurodegenerative diseases. In that context, excitotoxicity induced by glutamate (GLU) plays an important role in mediating neurotoxicity. Several drugs have been used in the treatment of diseases involving excitotoxicity. Nonetheless, some patients (20-30%) present drug resistance. Thus, it is necessary to find chemicals able to attenuate mitochondrial dysfunction in the case of excitotoxicity. In this work, we treated the human neuroblastoma SH-SY5Y cell line with the diterpene carnosic acid (CA) at 1μM for 12h prior to the exposure to GLU for further 24h. We found that CA prevented the GLU-induced mitochondrion-related redox impairment and bioenergetic decline in SH-SY5Y cells. CA also downregulated the pro-apoptotic stimulus elicited by GLU in this experimental model. CA exerted mitochondrial protection by a mechanism associated with the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), since silencing of this protein with small interfering RNA (siRNA) suppressed the CA-induced protective effects. Future directions include investigating whether CA would be able to modulate mitochondrial function and/or dynamics in in vivo experimental models of excitotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.