Abstract
Human exploitation of landscapes result in widespread species range loss and spatial community redistribution. Reduced species occupancy for large ranging terrestrial carnivore communities in disturbed or fragmented landscapes is a common outcome but the underlying mechanisms are ambiguous and the complexity of interacting mechanisms often under-appreciated. To examine for similarity in spatial responses of carnivores to human-mediated landscape disturbance, we hypothesize common mechanism(s) to manifest at the community-level. To then incorporate a competitive surface, we evaluate the relative role interspecific interactions may play, where some species are benefited by altered habitat conditions. We deployed camera-trap arrays across a systematic grid-based study design to quantify carnivore occurrence. We tested hypotheses to understand spatial patterns of carnivore occurrence, in relation to biophysical and anthropogenic landscape factors, using multivariate analysis and species distribution models under an information-theoretic approach. Differential response was found within the carnivore community, with some species occurring more frequently in disturbed landscapes while others displayed landscape scale avoidance of more highly disturbed areas. Interspecific interactions played an additive role to human-mediated response by some carnivores—suggesting generalist, human-adapted species, exaggerate interference interactions for other more sensitive species. Generalizable patterns are highly sought as clues to consistent mechanisms effecting changes to spatial distributions, but evidence weighs heavily in favour of species-specificity in responses implicating mechanisms that likewise vary for each species. Our findings underscore the value of a trait-based and community-level approach to understanding and managing the effects of anthropogenic land-use change on vertebrate biodiversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.