Abstract

AbstractCarnation‐like CuO hierarchical nanostructures assembled by ultrathin porous nanosheets were successfully fabricated via a facile solvothermal route followed with heat treatment. As‐prepared CuO nanostructures exhibited excellent catalytic activity toward glucose oxidation in the absence of any enzymes. Under the optimized conditions, the CuO‐based enzymeless glucose sensor showed high sensitivity of 3.15 mA mM−1 cm−2, low limit of detection (98 nM, S/N=3), good reproducibility, excellent selectivity and long‐time stability. The superb nonenzymatic glucose sensing performance of the CuO hierarchical nanostructures was attributed to the highly catalytically active sites at the edges and basal planes of the CuO nanosheets, facile transportation of analytes through the abundant mesopores and macropores, robust and stable hierarchical structure. Moreover, the CuO‐based enzymeless glucose sensor showed high accuracy and reliability in comparison with clinical glucometer for quantitative determination of glucose in human blood serum samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.